PWI Joist Series

Reference Design Values

<table>
<thead>
<tr>
<th>Joist Series</th>
<th>Joist Depth</th>
<th>EI (x 106 lb-in2)</th>
<th>K (x 106 lb)</th>
<th>M (ft-lb)</th>
<th>V (lb)</th>
<th>ER (lb)</th>
<th>IR (lb)</th>
<th>Vertical Load (plf)</th>
<th>Weight (plf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWI 20</td>
<td>9"</td>
<td>145</td>
<td>4.94</td>
<td>2520</td>
<td>1330</td>
<td>915</td>
<td>1990</td>
<td>2000</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>253</td>
<td>6.18</td>
<td>3265</td>
<td>1705</td>
<td>915</td>
<td>1990</td>
<td>2000</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>373</td>
<td>7.28</td>
<td>3890</td>
<td>1955</td>
<td>915</td>
<td>1990</td>
<td>2000</td>
<td>2.5</td>
</tr>
<tr>
<td>PWI 45</td>
<td>9½"</td>
<td>206</td>
<td>4.94</td>
<td>3345</td>
<td>1330</td>
<td>980</td>
<td>2240</td>
<td>2000</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>11"</td>
<td>330</td>
<td>6.18</td>
<td>4315</td>
<td>1705</td>
<td>980</td>
<td>2240</td>
<td>2000</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>486</td>
<td>7.28</td>
<td>5140</td>
<td>1955</td>
<td>980</td>
<td>2240</td>
<td>2000</td>
<td>2.8</td>
</tr>
<tr>
<td>PWI 47</td>
<td>9½"</td>
<td>344</td>
<td>6.18</td>
<td>4280</td>
<td>1705</td>
<td>885</td>
<td>1930</td>
<td>2000</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>499</td>
<td>7.28</td>
<td>5075</td>
<td>1955</td>
<td>900</td>
<td>1995</td>
<td>2000</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>674</td>
<td>8.32</td>
<td>5790</td>
<td>2190</td>
<td>910</td>
<td>2060</td>
<td>2000</td>
<td>2.9</td>
</tr>
<tr>
<td>PWI 50</td>
<td>9½"</td>
<td>186</td>
<td>4.94</td>
<td>3800</td>
<td>1330</td>
<td>1015</td>
<td>2040</td>
<td>2000</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>322</td>
<td>6.18</td>
<td>4915</td>
<td>1705</td>
<td>1015</td>
<td>2040</td>
<td>2000</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>480</td>
<td>7.28</td>
<td>5860</td>
<td>1955</td>
<td>1015</td>
<td>2040</td>
<td>2000</td>
<td>2.6</td>
</tr>
<tr>
<td>PWI 60</td>
<td>9½"</td>
<td>231</td>
<td>4.94</td>
<td>3780</td>
<td>1330</td>
<td>1080</td>
<td>2240</td>
<td>2000</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>396</td>
<td>6.18</td>
<td>4900</td>
<td>1705</td>
<td>1080</td>
<td>2330</td>
<td>2000</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>584</td>
<td>7.28</td>
<td>5895</td>
<td>1955</td>
<td>1080</td>
<td>2330</td>
<td>2000</td>
<td>2.9</td>
</tr>
<tr>
<td>PWI 70</td>
<td>9½"</td>
<td>440</td>
<td>6.18</td>
<td>6730</td>
<td>1705</td>
<td>1160</td>
<td>2460</td>
<td>2000</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>644</td>
<td>7.28</td>
<td>8030</td>
<td>1955</td>
<td>1160</td>
<td>2460</td>
<td>2000</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>873</td>
<td>8.32</td>
<td>9200</td>
<td>2190</td>
<td>1160</td>
<td>2460</td>
<td>2000</td>
<td>3.3</td>
</tr>
<tr>
<td>PWI 77</td>
<td>9½"</td>
<td>261</td>
<td>6.08</td>
<td>5155</td>
<td>1430</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>442</td>
<td>7.60</td>
<td>6675</td>
<td>1925</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>648</td>
<td>8.96</td>
<td>7960</td>
<td>2125</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>3.3</td>
</tr>
<tr>
<td>PWI 90</td>
<td>9½"</td>
<td>881</td>
<td>10.24</td>
<td>9120</td>
<td>2330</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>11½"</td>
<td>1152</td>
<td>11.52</td>
<td>10265</td>
<td>2535</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>14"</td>
<td>1463</td>
<td>12.80</td>
<td>11395</td>
<td>2740</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>18"</td>
<td>1815</td>
<td>14.08</td>
<td>12520</td>
<td>2935</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>20"</td>
<td>2209</td>
<td>15.36</td>
<td>13630</td>
<td>3060</td>
<td>1285</td>
<td>2695</td>
<td>2400</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>22"</td>
<td>2664</td>
<td>14.08</td>
<td>19245</td>
<td>2935</td>
<td>2400</td>
<td>4605</td>
<td>1300</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>24"</td>
<td>3222</td>
<td>15.36</td>
<td>20955</td>
<td>3060</td>
<td>2400</td>
<td>4605</td>
<td>1300</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Values apply to normal load duration. All values except EI, k and Vertical Load may be adjusted for other load durations as permitted by the code.
2. Bending stiffness (EI).
3. Coefficient of shear deflection (k). Use Equations 1 or 2 to calculate uniform load or center point load deflections in a simple-span application.

Uniform Load:

$$\delta = \frac{5wL^2}{384EI}$$

Center Point Load:

$$\delta = \frac{P\ell}{48EI}$$

Where:

- δ = calculated deflection [in]
- w = uniform load [lb/in]
- P = concentrated load [lb]
- ℓ = design span [in]
- EI = bending stiffness of the I-joist [lb-in2]
- k = coefficient of shear deflection [lb]

4. Moment capacity (M). The tabulated values shall not be increased by any code-allowed repetitive member factor.
5. Shear capacity (V).
6. End reaction capacity (ER) of the I-joist without web stiffeners and a minimum bearing length of 1½ inches.
7. Intermediate reaction capacity (IR) of the I-joist without web stiffeners and a minimum bearing length of 3½ inches.
8. Blocking panel and rim joint vertical load capacity.
9. Web stiffeners required. See Web Stiffener Requirements on page 94.